Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Labex TULIP CNRS

Laboratory of Plant-Microbe Interactions - LIPM

Laboratory of Plant-Microbe Interactions

Publications - Symbiotic functions, genome and evolution of rhizobia

Publications (5 last years)

  • Clerissi C, Touchon M, Capela D, Tang M, Cruveiller S, Genthon C, Lopez-Roques C, Parker MA, Moulin L, Masson-Boivin C, Rocha EPC. (2018) Parallels between experimental and natural evolution of legume symbionts. Nature communications 9:2264. doi: 10.1038/s41467-018-04778-5. 
    PubMed
  • Masson-Boivin C and Sachs JL. (2018) Symbiotic nitrogen fixation by rhizobia – the roots of a success story. Cur. Op. Plant Biol. 44:7-15. doi: 10.1016/j.pbi.2017.12.001 
    PubMed
  • Garnerone AM, Sorroche F, Zou L, Mathieu-Demazière C, Tian CF, Masson-Boivin C, Batut J (2018) NsrA, a Predicted β-Barrel Outer Membrane Protein Involved in Plant Signal Perception and the Control of Secondary Infection in Sinorhizobium meliloti. Journal of Bacteriology 200 (11) e00019-18. 
    PubMed
  • Daubech B, Remigi P, Doin de Moura G, Marchetti M, Pouzet C, Auriac MA, Gokhale CS, Masson-Boivin C, and Capela D. (2017) Spatio-temporal control of mutualism in legumes helps spread symbiotic nitrogen fixation. eLife 6:e28683 doi: 10.7554/eLife.28683 
    PubMed
  • Zou L, Gastebois A, Mathieu-Demazière C, Sorroche F, Masson-Boivin C, Batut J and AM Garnerone. (2017) Transcriptomic insight in the control of legume root secondary infection by the Sinorhizobium meliloti transcriptional regulator Clr. Front. Microbiol. doi: 10.3389/fmicb.2017.01236. 
    PubMed
  • Capela D, Marchetti M, Clérissi C, Guetta D, Castaing JP, Perrier A, Gris C, Valls M, Jauneau A, Cruveiller S, Rocha EPC and C Masson-Boivin. (2017) Recruitment of a lineage-specific virulence regulatory pathway promotes intracellular infection by a plant pathogen experimentally evolved into a legume symbiont. Mol. Biol Evol. doi: 10.1093/molbev/msx165. 
    PubMed
  • Ling J, Wang H, Wu P, Li T, Tang Y, Liu Z, Naseer N, Zheng H, Masson-Boivin C, Zhong Z, and J Zhu. (2016) Plant Nodulation Inducers Enhance Horizontal Gene Transfer of Azorhizobium caulinodans Symbiosis Island. Proc. Natl. Acad. Sci. USA. 113 :13875-13880. 
    PubMed
  • Marchetti M , Clerissi C, Yousfi Y, Gris C, Bouchez O, Rocha E, Cruveiller S,Jauneau A, Capela D and Masson-Boivin C. (2016)  Experimental evolution of rhizobia may lead to either extra- or intracellular symbiotic adaptation depending on the selection regime. Mol Ecol, doi: 10.1111/mec.13895 
    PubMed
  • Remigi P, Zhu J, Young JPW and C Masson-Boivin. (2016) Symbiosis within Symbiosis: Evolving Nitrogen-Fixing Legume Symbionts. Trends Microbiol. 24:63–75 
    PubMed
  • Remigi P, Capela D, Clerissi C, Tasse L, Torchet R, Bouchez O, Batut J, Cruveiller S, Rocha E PC and Masson-Boivin C. (2014) Transient Hypermutagenesis Accelerates the Evolution of Legume Endosymbionts Following Horizontal Gene Transfer. PLoS Biology, 12(9): e1001942.
    PubMed
  • Marchetti M, Jauneau A, Capela D, Remigi P, Gris C, Batut J and Masson-Boivin C. (2014) Shaping bacterial symbiosis with legumes by experimental evolution. Mol Plant Microbe Interact. 27 : 956–964.
    PubMed
  • Roux B, Rodde N, Jardinaud MF, Timmers T, Sauviac L, Cottret L, Carrère S, Sallet E, Courcelle E, Moreau S, Debellé F, Capela D, de Carvalho-Niebel F, Gouzy J, Bruand C, Gamas P. (2014) An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser capture microdissection coupled to RNA-seq. Plant J., 77(6):817-37.
    PubMed
  • Selami N, Auriac MC, Catrice O, Capela D, Kaid-Harche M, Timmers T. (2014) Morphology and anatomy of root nodules of Retama monosperma (L.)Boiss. Plant Soil, 379:109-119.
  • Mathieu-Demazière C, Poinsot V, Masson-Boivin C, Garnerone AM and J Batut. 2013. Biochemical and functional characterization of SpdA, a 2′, 3′cyclic nucleotide phosphodiesterase from Sinorhizobium meliloti . BMC Microbiology, 13:268 doi:10.1186/1471-2180-13-268.
    PubMed
  • Guan SH, Gris C, Cruveiller S, Pouzet C, Tasse L, Leur A, Maillard A, Medigue C, Batut J, Masson-Boivin C and C Capela. (2013) Experimental evolution of nodule intracellular infection in legume symbionts.The ISME Journal doi:10.1038/ismej.2013.24 
    PubMed
  • Sallet E, Roux B, Sauviac L, Jardinaud MF, Carrère S, Faraut T, de Carvalho-Niebel F, Gouzy J, Gamas P, Capela D, Bruand C, Schiex T. (2013) Next Generation Annotation of prokaryotic genomes with EuGene-P: application to Sinorhizobium meliloti 2011. DNA Res., 20(4):339-54.
    PubMed
  • Marchetti M, Capela C, Poincloux R, Benmeradi N, Auriac MC, Le Ru A, Maridonneau-Parini I, Batut J, and C Masson-Boivin. (2013) Queuosine biosynthesis is required for Sinorhizobium meliloti-induced cytoskeletal modifications on HeLa cells and symbiosis with Medicago truncatula. PLoS One 10.1371/journal.pone.0056043.
    PubMed

 Other selected publications

  • Saad M, Crèvecoeur M, Masson-Boivin C, and X Perret. (2012) The T3SS of Cupriavidus taiwanensis strain LMG19424 compromizes symbiosis with Leucaena leucocephala. Appl. Environ. Microbiol.; 78:20 7476-7479.
    PubMed
  • Tian CF, Garneronne AM, Mathieu-Demazière C, Masson-Boivin C and J Batut. (2012) Plant-activated Bacterial Receptor Adenylate Cyclases Modulate Epidermal Infection in the Sinorhizobium meliloti-Medicago Symbiosis. Proc Nat Acad Sci USA. doi/10.1073/pnas.1120260109.
    PubMed
  • Batut, J., Mergaert, P. and Masson-Boivin, C. (2011). Peptide signalling in the rhizobium-legume symbiosis. Cur Op Microbiol 14:181-187.
    PubMed
  • Marchetti, M., Catrice, O., Batut, J. and Masson-Boivin, C. (2011). Cupriavidus taiwanensis bacteroids in Mimosa pudica indeterminate nodules are not terminally differentiated. Appl Env Microbiol 77 :2161-2164.
    PubMed
  • Marchetti, M., Capela, D., Glew, M., Cruveiller, S., Chane-Woon-Ming, B., Gris, C., Timmers, T., Poinsot, V., Gilbert, L.B., Heeb, P., Médigue, C., Batut, J. and Masson-Boivin, C. (2010) Experimental evolution of a plant pathogen into a legume symbiont. PloS Biol 8(1):e1000280.
    PubMed
  • Masson-Boivin, C., Giraud, E., Perret, X. and Batut, J. (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458-466.
    PubMed
  • Becker, A., Barnett, M.J., Capela, D., Dondrup, M., Kamp, P.B., Krol, E., Linke, B., Rüberg, S., Runte, K., Schroeder, B.K., Weidner, S., Yurgel, S.N., Batut, J., Long, S.R., Pühler, A., and Goesmann, A. (2009) A portal for rhizobial genomes: RhizoGATE integrates a Sinorhizobium meliloti genome annotation update with postgenome data. J Biotechnol  140:45-50.
    PubMed
  • Amadou, C., Pascal, G., Mangenot, S., Glew, M., Bontemps, C., Capela, D., Carrère, S., Cruveiller, S., Dossat, C., Lajus, A., Marchetti, M., Poinsot, V., Rouy, Z., Servin, B., Saad, M., Schenowitz, C., Barbe, V., Batut, J., Médigue, C., and Masson-Boivin, C. (2008) Genome sequence of the beta-rhizobium Cupriavidus taiwanensis and comparative genomics of rhizobia. Genome Res 18:1472-83.
    PubMed
  • Peltzer, M., Roques, N., Poinsot, V., Aguilar, O.M., Batut, J. and Capela, D. (2008) Auxotrophy accounts for nodulation defect of most Sinorhizobium meliloti mutants in the branched-chain amino acid biosynthesis pathway. Mol Plant Microbe Interact 21:1232-41.
    PubMed
  • Batut, J., Andersson, S.G.E., O'Callaghan, D. (2004) The evolution of chronic infection strategies in the α-proteobacteria. Nature Rev Microbiol 2, 933-945.
    PubMed
  • Capela, D., Barloy-Hubler, F., Gouzy, J., Bothe, G., Ampe, F., Batut, J., Boistard, P., Becker, A., Boutry, M., Cadieu, E., Dreano, S., Gloux, S., Godrie, T., Goffeau, A., Kahn, D., Kiss, E., Lelaure, V., Masuy, D., Pohl, T., Portetelle, D., Puhler, A., Purnelle, B., Ramsperger, U., Renard, C., Thebault, P., Vandenbol, M., Weidner, S., Galibert, F.  (2001) Analysis of the chromosome sequence of the legume symbiont Sinorhizobium meliloti strain 1021. Proc NatL Acad Sci USA 98: 9877-9882.
    PubMed
  • Galibert, F., Finan, T.M., Long, S.R., Puhler, A., Abola, P., Ampe, F., Barloy-Hubler, F., Barnett, M.J., Becker, A., Boistard, P., Bothe, G., Boutry, M., Bowser, L., Buhrmester, J., Cadieu, E., Capela, D., Chain, P., Cowie, A., Davis, R.W., Dreano, S., Federspiel, N.A., Fisher, R.F., Gloux, S., Godrie, T., Goffeau, A., Golding, B., Gouzy, J., Gurjal, M., Hernandez-Lucas, I., Hong, A., Huizar, L., Hyman, R.W., Jones, T., Kahn, D., Kahn, M.L., Kalman, S., Keating, D.H., Kiss, E., Komp, C., Lalaure, V., Masuy, D., Palm, C., Peck, M.C., Pohl, T.M., Portetelle, D., Purnelle, B., Ramsperger, U., Surzycki, R., Thebault, P., Vandenbol, M., Vorholter, F.J., Weidner, S., Wells, D.H., Wong, K., Yeh, K.C., Batut, J. (2001) The composite genome of the legume symbiont Sinorhizobium meliloti. Science, 293: 668-672.
    PubMed
  • Moulin, L., Munive, A., Dreyfus, B., Boivin-Masson, C. (2001) Nodulation of legumes by members of the β-subclass of proteobacteria. Nature 411, 948. 
    PubMed