Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu LIPM INRA CNRS

Laboratory of Plant-Microbe Interactions - LIPM

Laboratory of Plant-Microbe Interactions

Publications - Sunflower Genetics and Genomics

2019

  • Calderón-González Á, Pouilly N, Muños S, Grand X, Coque M, Velasco L, Pérez-Vich B (2019) An SSR-SNP Linkage Map of the Parasitic Weed Orobanche cumana Wallr. Including a Gene for Plant Pigmentation. Front Plant Sci. 10: 797.
    PubMed
  • Fernandez O, Urrutia M, Berton T, Bernillon S, Deborde C, Jacob D, Maucourt M, Maury P, Duruflé H, Gibon Y, Langlade NB, Moing A (2019) Metabolomic characterization of sunflower leaf allows discriminating genotype groups or stress levels with a minimal set of metabolic markers. Metabolomics 15: 56.
    PubMed
  • Mangin B, Rincent R, Rabier CE, Moreau L, Goudemand-Dugue E (2019) Training set optimization of genomic prediction by means of EthAcc. PLoS One. 14:e0205629.
    PubMed
  • Hübner S, Bercovich N, Todesco M, Mandel JR, Odenheimer J, Ziegler E, Lee JS, Baute GJ, Owens GL,, Grassa CJ,, Ebert DP,, Ostevik KL,0, Moyers BT,, Yakimowski S, Masalia RR, Gao L, Ćalić I, Bowers JE, Kane NC,, Swanevelder DZH, Kubach T, Muños S, Langlade NB, Burke JM, Rieseberg LH (2019) Sunflower pan-genome analysis shows that hybridization altered gene content and disease resistance. Nat. Plants 1: 54-62.
    PubMed
  • Gosseau F, Blanchet N, Varès D, Burger P, Campergue D, Colombet C, Gody L, Liévin JF, Mangin B, Tison G, Vincourt P, Casadebaig P, Langlade N (2019) Heliaphen, an Outdoor High-Throughput Phenotyping Platform for Genetic Studies and Crop Modeling. Front Plant Sci. 9:1908.
    PubMed

2018

  • Blanchet, N, Casadebaig, P, Debaeke, P, Duruflé, H, Gody, L, Gosseau, F, Langlade, NB, Maury, P. (2018) Data describing the eco-physiological responses of twenty-four sunflower genotypes to water deficit. Data Brief  21:1296-1301.
    PubMed
  • Rabier, C.E., Mangin, B., Grusea, S. (2018) On the accuracy in high-dimensional linear models and its application to genomic selection. Scandinavian Journal of Statistics. DOI: 10.1111/sjos.12352
  • Xia, Q., Saux, M., Ponnaiah, M., Gilard, F., Perreau, F., Huguet, S., Balzergue, S., Langlade, N., Bailly, C., Meimoun, P., Corbineau, F., El-Maarouf-Bouteau, H. (2018) One Way to Achieve Germination: Common Molecular Mechanism Induced by Ethylene and After-Ripening in Sunflower Seeds. International Journal of Molecular Sciences 19(8). pii: E2464. doi: 10.3390/ijms19082464.
    PubMed
  • Subrahmaniam, H., Libourel, C., Journet, E.P., Morel, J.B., Munos, S., Niebel, A., Raffaele, S., Roux, F. (2018) The genetics underlying natural variation of plant-plant interactions, a beloved but forgotten member of the family of biotic interactions. The Plant Journal 93:747-770.
    PubMed
  • Bonnafous, F., Fievet, G., Blanchet N., Boniface, M.C., Carrère, S., Gouzy,J., Legrand, L., Marage G., Bret-Mestries, E., Munos, S.; Pouilly, N., Vincourt, P., Langlade, N., Mangin, B. (2018) Comparison of GWAS models to identify non-additive genetic control of flowering time in sunflower hybrids. Theoretical and Applied Genetics 131:319-332
    PubMed

2017

  • Bordat, A., Marchand, G., Langlade, N., Pouilly, N., Munos, S., Dechamp-Guillaume, G., Vincourt, P., Bret-Mestries, E. (2017) Different genetic architectures underlie crop responses to the same pathogen: the {Helianthus annuus * Phoma macdonaldii} interaction case for black stem disease and premature ripening. BMC Plant Biology Oct 19;17(1):167. doi: 10.1186/s12870-017-1116-1
    PubMed
  • Mangin B., Bonnafous F., Blanchet N., Boniface M.C., Bret-Mestries E., Carrère S., Cottret L., Legrand L., Marage G., Pegot-Espagnet P., Muños S., Pouilly N., Vear F., Vincourt P. and Langlade N. (2017) Genomic prediction of sunflower hybrids oil content. Front Plant Sci. 2017 Sep 21;8:1633. doi: 10.3389/fpls.2017.01633. eCollection 2017.
    PubMed
  • Duhnen, A., Gras, A., Teyssèdre, S., Romestant, M., Claustres, B., Daydé, J., Mangin, B. (2017) Genomic selection for yield and seed protein content in soybean: study of breeding program data and assessment of prediction accuracy. Crop Science Vol. 57 No. 3, p. 1325-1337 
    PubMed
  • Mangin, B., Casadebaig, P., Cadic, E., Blanchet, N., Boniface, M.C., Carrère, S., Gouzy, J., Legrand, L., Mayjonade, B., Pouilly, N., André, T., Coque, M., Piquemal, J., Romestant, M., Vincourt, P., Muños, S., Langlade, N.B. (2017) Genetic control of oil yield plasticity to combined abiotic stresses using a joint approach of crop modeling and genome-wide association. Plant, Cell & Environment Apr 18. doi: 10.1111/pce.12961.
    PubMed
  • Badouin H., Gouzy J., Grassa C.J., Murat F., Staton S.E., Cottret L., Lelandais-Brière C., Owens G.L., Carrère S., Mayjonade B., Legrand L., Gill N., Kane N.C., Bowers J.E., Hubner S., Bellec A., Bérard A., Bergès H., Blanchet N., Boniface M.C., Brunel D., Catrice O., Chaidir N., Claudel C., Donnadieu C., Faraut T., Fievet G., Helmstetter N., King M., Knapp S.J., Lai Z., Le Paslier M.C., Lippi Y., Lorenzon L., Mandel J.R., Marage G., Marchand G., Marquand E., Bret-Mestries E., Morien E., Nambeesan S., Nguyen T., Pegot-Espagnet P., Pouilly N., Raftis F., Sallet E., Schiex T., Thomas J., Vandecasteele C., Varès D., Vear F., Vautrin S., Crespi M., Mangin B., Burke J.M., Salse J., Muños S., Vincourt P., Rieseberg L.H., Langlade N.B. (2017) The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546:148-152.
    PubMed
  • Mangin, B., Pouilly, N., Boniface, M.C., Langlade, N.B., Vincourt, P., Vear, F., Muños, S. (2017) Molecular diversity in sunflower populations maintained as genetic resources is affected by multiplication processes and breeding for major traits. Theoretical and Applied Genetics 2017 Mar 2. doi: 10.1007/s00122-017-2872-x.
    PubMed
  • Debaeke P, Casadebaig P, Flénet F, Langlade NB (2016) Sunflower crop and climate change: vulnerability, adaptation, and mitigation potential from case-studies in Europe. OCL 24(1)

2016

  • Fernandez, O., Urrutia, M., Bernillon, S., Giauffret, C., Tardieu, F., Le Gouis, J., Langlade, N., Charcosset, A., Moing, A., Gibon, Y. (2016) Fortune telling: metabolic markers of plant performance. Metabolomics 12: 158
    PubMed
  • Gascuel, Q., Buendia, L., Pecrix, Y., Blanchet, N., Muños, S., Vear, F., Godiard, L. (2016) RXLR and CRN effectors from the sunflower downy mildew pathogen Plasmopara halstedii induce hypersensitive-like responses in resistant sunflower lines. Front Plant Sci. doi: 10.3389/fpls.2016.01887
    PubMed
  • Louarn, J., Boniface, M.C., Pouilly, N., Velasco, L., Pérez-Vich, B., Vincourt, P., Muños, S. (2016) Sunflower Resistance to Broomrape (Orobanche cumana) Is Controlled by Specific QTLs for Different Parasitism Stages. Front Plant Sci. doi: 10.3389/fpls.2016.00590
    PubMed
  • Mayjonade, B., Gouzy, J., Donnadieu, C., Pouilly, N., Marande, W., Callot, C., Langlade, N., Muños, S. (2016) Extraction of high-molecular-weight genomic DNA for the long-read sequencing of single molecules. BioTechniques 61: 203–205
    PubMed
  • Nicolas, S.D., Péros, J.P., Lacombe T., Launay, A., Le Paslier, M.C., Bérard, A., Mangin, B., Valière, S., Martins, F., Le Cunff, L., et al (2016) Genetic diversity, linkage disequilibrium and power of a large grapevine (Vitis vinifera L) diversity panel newly designed for association studies. BMC Plant Biology 16: 74
    PubMed
  • Rabier, C.E., Barre, P., Asp, T., Charmet, G., Mangin, B. (2016) On the Accuracy of Genomic Selection. PLOS ONE 11: e0156086
    PubMed
  • Andrianasolo, F.N., Casadebaig, P., Langlade, N., Debaeke, P., Maury, P. (2016) Effects of plant growth stage and leaf aging on the response of transpiration and photosynthesis to water deficit in sunflower. Functional Plant Biology 43(8) · June 2016
  • Khoufi, S., Pouilly, N., Muños, S., Bérard, A., Fayçal BJ, Vincourt, P., Brunel, D. (2016) Genetic Diversity and Core Collection Constitution for Subsequent Creation of New Sunflower Varieties in Tunisia. Helia. doi: 10.1515/helia-2016-0002
  • Gélard, W., Burger, P., Casadebaig, P., Langlade, N., Debaeke, P., Devy, M., Herbulot, A. (2016) 3D plant phenotyping in sunflower using architecture-based organ segmentation from 3D point clouds. 5th International Workshop on Image Analysis Methods for the Plant Sciences

2014

  • Marchand, G., Huynh-Thu, V. A., Kane, N., Arribat, S., Varès, D., Rengel, D., Balzergue, S., Rieseberg, L., Vincourt, P., Geurts, P., Vignes, M. and Langlade, N. B. (2014) Bridging physiological and evolutionary time scales in a gene regulatory network.  New Phytologist 203(2):685-96. doi: 10.1111/nph.12818. Epub 2014 May 2
    PubMed

2013

  • Marchand, G., Mayjonade, B., Varès,D., Blanchet, N., Boniface, M.C., Maury, P., Andrianasolo Nambinina F., Burger, P., Debaeke, P., Casadebaig, P., Vincourt, P., Langlade N.B. (2013) A biomarker based on gene expression indicates plant water status in controlled and natural environments. Plant Cell and Environment DOI:10.1111/pce.12127  
    PubMed
  • Cadic, E.,Coque, M., Vear, F., Grezes-Besset, B., Pauquet, J., Piquemal, J., Lippi, Y., Blanchard, P., Romestant, M., Pouilly, N., Rengel, D., Gouzy, J., Langlade, N., Mangin, B., Vincourt, P. (2013) Combined linkage and association mapping of flowering time in Sunflower (Helianthus annuus L.) Theor.Appl.Genet. DOI: 10.1007/s00122-013-2056-2
    PubMed

2012

  • Rengel, D., Arribat, S., Pierre Maury, P., Martin-Magniette, M.L., Hourlier, T., Laporte, M., Varès, D., Carrère, C., Grieu, P., Balzergue, S., Gouzy, J., Vincourt, P., Langlade, N.B (2012) A Gene-Phenotype Network Based on Genetic Variability for Drought Responses Reveals Key Physiological Processes in Controlled and Natural Environments. PLoS ONE 7(10): e45249. doi:10.1371/journal.pone.0045249
    PubMed
  • Kane, N. C., Burke, J. M., Marek, L., Seiler, G., Vear, F., Baute, G., Knapp, S. J., Vincourt, P. and Rieseberg, L. H. (2012), Sunflower genetic, genomic and ecological resources. Molecular Ecology Resources. doi: 10.1111/1755-0998.12023
    PubMed
  • Merah, O., Langlade, N., Alignan, M., Roche, J., Pouilly, N., Lippi, Y., Vear, F., Cerny, M., Bouniols, A., Mouloungui, Z., Vincourt, P. (2012) Genetic analysis of phytosterol content in sunflower seeds. Theor.Appl.Genet. DOI: 10.1007/s00122-012-1937-0 
    PubMed
  • Vincourt, P., As Sadi, F., Bordat, A., Langlade, N., Gouzy, J., Pouilly, N., Lippi, Y., Serre, F., Godiard, L., Tourvieille de Labrouhe, D., Vear, F. (2012) Consensus mapping of major resistance genes and independent QTL for quantitative resistance to sunflower downy mildew Theor.Appl.Genet. DOI: 10.1007/s00122-012-1882-y  
    PubMed
  • Haddadi, P., Ebrahimi, A., Langlade, N.B., Yazdi-samadi, B., Berger, M., Calmon, A., Naghavi, M.R., Vincourt, P., Sarrafi, A. (2012) Genetic dissection of tocopherol and phytosterol in recombinant inbred lines of sunflower through quantitative trait locus analysis and the candidate gene approach. Molecular Breeding 29(3):

2011

  • As-Sadi, F., Carrere, S., Gascuel, Q., Hourlier, T., Rengel, D., Le Paslier, M-C, Bordat, A., Boniface, M-C., Brunel, D., Gouzy, J., Godiard, L.*, Vincourt, P.* (2011). Transcriptomic analysis of the interaction between Helianthus annuus and its obligate parasite Plasmopara halstedii shows single nucleotide polymorphisms in CRN sequences. BMC Genomics 12:498.
    PubMed
  • Bazin, J., Langlade, N., Vincourt, P., Arribat, S., Balzergue, S., El-Maarouf-Bouteau, H., Bailly, C. (2011) Targeted mRNA Oxidation Regulates Sunflower Seed Dormancy Alleviation during Dry After-Ripening: PLANT CELL  23 (6) : 2196-2208  DOI: 10.1105/tpc.111.086694  
    PubMed
  • Kane, N.C., Gill, N., King, M.G., Bowers, J.E., Berges, H., Gouzy, J., Bachlava, E., Langlade, N.B., Lai, Z., Stewart, M., Vincourt, P., Knapp, S.J., Rieseberg, L.H. (2011) Progress towards a reference genome for sunflower. Botany 89: 429–437 

2010

  • Haddadi, P., Yazdi-Samadi, B., Langlade, N.B., Naghavi, M.R., Berger, M., Kalantari,  A., Calmon, A., Maury, P., Vincourt, P., Sarrafi, A. (2010) Genetic control of protein, oil and fatty acids content under partial drought stress and late sowing conditions in sunflower (Helianthus annuus). African Journal of Biotechnology 9 (40) :6768-6782

2008

  • Vear, F., Serre, F., Jouan-Dufournel, I.,Bert, P.F., Roche, S., Walser, P., de Labrouhe, D.T., Vincourt, P. (2008)  Inheritance of quantitative resistance to downy mildew (Plasmopara halstedii) in sunflower (Helianthus annuus L.)  EUPHYTICA  164 (2) : 561-570  DOI: 10.1007/s10681-008-9759-5