Know more

Our use of cookies

Cookies are a set of data stored on a user’s device when the user browses a web site. The data is in a file containing an ID number, the name of the server which deposited it and, in some cases, an expiry date. We use cookies to record information about your visit, language of preference, and other parameters on the site in order to optimise your next visit and make the site even more useful to you.

To improve your experience, we use cookies to store certain browsing information and provide secure navigation, and to collect statistics with a view to improve the site’s features. For a complete list of the cookies we use, download “Ghostery”, a free plug-in for browsers which can detect, and, in some cases, block cookies.

Ghostery is available here for free: https://www.ghostery.com/fr/products/

You can also visit the CNIL web site for instructions on how to configure your browser to manage cookie storage on your device.

In the case of third-party advertising cookies, you can also visit the following site: http://www.youronlinechoices.com/fr/controler-ses-cookies/, offered by digital advertising professionals within the European Digital Advertising Alliance (EDAA). From the site, you can deny or accept the cookies used by advertising professionals who are members.

It is also possible to block certain third-party cookies directly via publishers:

Cookie type

Means of blocking

Analytical and performance cookies

Realytics
Google Analytics
Spoteffects
Optimizely

Targeted advertising cookies

DoubleClick
Mediarithmics

The following types of cookies may be used on our websites:

Mandatory cookies

Functional cookies

Social media and advertising cookies

These cookies are needed to ensure the proper functioning of the site and cannot be disabled. They help ensure a secure connection and the basic availability of our website.

These cookies allow us to analyse site use in order to measure and optimise performance. They allow us to store your sign-in information and display the different components of our website in a more coherent way.

These cookies are used by advertising agencies such as Google and by social media sites such as LinkedIn and Facebook. Among other things, they allow pages to be shared on social media, the posting of comments, and the publication (on our site or elsewhere) of ads that reflect your centres of interest.

Our EZPublish content management system (CMS) uses CAS and PHP session cookies and the New Relic cookie for monitoring purposes (IP, response times).

These cookies are deleted at the end of the browsing session (when you log off or close your browser window)

Our EZPublish content management system (CMS) uses the XiTi cookie to measure traffic. Our service provider is AT Internet. This company stores data (IPs, date and time of access, length of the visit and pages viewed) for six months.

Our EZPublish content management system (CMS) does not use this type of cookie.

For more information about the cookies we use, contact INRA’s Data Protection Officer by email at cil-dpo@inra.fr or by post at:

INRA
24, chemin de Borde Rouge –Auzeville – CS52627
31326 Castanet Tolosan CEDEX - France

Dernière mise à jour : Mai 2018

Menu Logo Principal Labex TULIP CNRS

Laboratory of Plant-Microbe Interactions - LIPM

Laboratory of Plant-Microbe Interactions

Publications - Endosymbiotic infection and nodule development

Publications (5 last years)

  • Liu CW, Breakspear A, Guan D, Cerri MR, Jackson K, Jiang S, Robson F, Radhakrishnan GV, Roy S, Bone C, Stacey N, Rogers C, Trick M, Niebel A, Oldroyd GED, de Carvalho-Niebel F, Murray JD. 2019. NIN Acts as a Network Hub Controlling a Growth Module Required for Rhizobial Infection. Plant Physiol. 179:1704-1722. doi: 10.1104/pp.18.01572.
    PubMed
  • Pecrix Y, Staton SE, Sallet E, Lelandais-Brière C, Moreau S, Carrère S, Blein T, Jardinaud MF, Latrasse D, Zouine M, Zahm M, Kreplak J, Mayjonade B, Satgé C, Perez M, Cauet S, Marande W, Chantry-Darmon C, Lopez-Roques C,  Bouchez O, Bérard A, Debellé F, Muños S, Bendahmane A, Bergès H, Niebel A, Buitink J, Frugier F, Benhamed M, Crespi M, Gouzy J, Gamas P. 2018. Whole-genome landscape of Medicago truncatula symbiotic genes. Nat Plants. 4:1017-1025. doi: 10.1038/s41477-018-0286-7. 
    PubMed
  • Gaudioso-Pedraza R, Beck M, Frances L, Kirk P, Ripodas C, Niebel A, Oldroyd GED, Benitez-Alfonso Y, de Carvalho-Niebel F. 2018. Callose-Regulated Symplastic Communication Coordinates Symbiotic Root Nodule Development.  Curr Biol 28:3562-3577 doi: 10.1016/j.cub.2018.09.031.
    PubMed
  • Roux B, Rodde N, Moreau S, Jardinaud MF, Gamas P. 2018. Laser Capture Micro-Dissection Coupled to RNA Sequencing: A Powerful Approach Applied to the Model Legume Medicago truncatula in Interaction with Sinorhizobium meliloti. Methods Mol Biol 1830:191-224. doi: 10.1007/978-1-4939-8657-6_12.
    PubMed
  • Fournier J, Imanishi L, Chabaud M, Abdou-Pavy I, Genre A, Brichet L, Lascano HR,  Muñoz N, Vayssières A, Pirolles E, Brottier L, Gherbi H, Hocher V, Svistoonoff S, Barker D, Wall LG. 2018. Cell remodeling and subtilase gene expression in the actinorhizal plant Discaria trinervis highlight host orchestration of intercellular Frankia colonization. New Phytol 219:1018-1030.DOI: 10.1111/nph.15216.
    PubMed
  • Kelner A, Leitão N, Chabaud M, Charpentier M, de Carvalho-Niebel F. 2018 . Dual Color Sensors for Simultaneous Analysis of Calcium Signal Dynamics in the Nuclear and Cytoplasmic Compartments of Plant Cells. Front Plant Sci 9:245. doi: 10.3389/fpls.2018.00245. eCollection.
    PubMed
  • Subrahmaniam HJ, Libourel C, Journet EP, Morel JB, Muños S, Niebel A, Raffaele S, Roux F. 2018. The genetics underlying natural variation of plant-plant interactions, a beloved but forgotten member of the family of biotic  interactions. Plant J 93:747-770. doi: 10.1111/tpj.13799.
    PubMed
  • Remblière C, Fournier J,  de Carvalho-Niebel F, Chabaud M. 2018. A simple Agrobacterium tumefaciens-mediated transformation method for rapid transgene expression in Medicago truncatula root hairs. Plant Cell Tiss Organ Cult 132:181–190.
    PubMed
  • Sevin-Pujol A, Sicard M, Rosenberg C, Auriac MC, Lepage A, Niebel A, Gough C, Bensmihen S. 2017. Development of a GAL4-VP16/UAS trans-activation system for tissue specific expression in Medicago truncatula. PLoS One. 12:e0188923. doi: 10.1371/journal.pone.0188923.
    PubMed
  • Gamas P, Brault M, Jardinaud MF, Frugier F. 2017. Cytokinins in Symbiotic Nodulation: When, Where, What For? Trends Plant Sci 22:792-802. doi:10.1016/j.tplants.2017.06.012. 
    PubMed
  • Martin FM, Uroz S, Barker DG. 2017. Ancestral alliances: Plant mutualistic symbioses with fungi and bacteria. Science 356(6340). pii: eaad4501. doi: 10.1126/science.aad4501. 
    PubMed
  • Cerri MR, Wang Q, Stolz P, Folgmann J, Frances L, Katzer K, Li X, Heckmann AB, Wang TL, Downie JA, Klingl A, de Carvalho-Niebel F, Xie F, Parniske M. 2017. The ERN1 transcription factor gene is a target of the CCaMK/CYCLOPS complex and controls rhizobial infection in Lotus japonicus. New Phytol 215:323-337. doi: 10.1111/nph.14547.
    PubMed
  • Carotenuto G, Chabaud M, Miyata K, Capozzi M, Takeda N, Kaku H, Shibuya N,Nakagawa T, Barker DG, Genre A. 2017. The rice LysM receptor-like kinase OsCERK1 is required for the perception of short-chain chitin oligomers in arbuscular mycorrhizal signaling. New Phytol 214:1440-1446. doi: 10.1111/nph.14539. 
    PubMed
  • Barker DG, Chabaud M, Russo G, Genre A. 2017. Nuclear Ca(2+) signalling in arbuscular mycorrhizal and actinorhizal endosymbioses: on the trail of novel underground signals. New Phytol 214:533-538. doi: 10.1111/nph.14350.  
    PubMed
  • Ribeiro CW, Baldacci-Cresp F, Pierre O, Larousse M, Benyamina S, Lambert A, Hopkins J, Castella C, Cazareth J, Alloing G, Boncompagni E, Couturier J, Mergaert P, Gamas P, Rouhier N, Montrichard F, Frendo P. 2017. Regulation of Differentiation of Nitrogen-Fixing Bacteria by Microsymbiont Targeting of Plant Thioredoxin s1. Curr Biol  27:250-256. doi: 10.1016/j.cub.2016.11.013. 
    PubMed
  • Rey T, Laporte P, Bonhomme M, Jardinaud MF, Huguet S, Balzergue S, Dumas B, Niebel A, Jacquet C. 2016. MtNF-YA1, A Central Transcriptional Regulator of Symbiotic Nodule Development, Is Also a Determinant of Medicago truncatula Susceptibility toward a Root Pathogen. Front Plant Sci 7:1837.
    PubMed
  • Zanetti ME, Rípodas C, Niebel A. 2016. Plant NF-Y transcription factors: Key players in plant-microbe interactions, root development and adaptation to stress. Biochim Biophys Acta doi: 10.1016/j.bbagrm.2016.11.007.
    PubMed
  • Satgé C, Moreau S, Sallet E, Lefort G, Auriac MC, Remblière C, Cottret L, Gallardo K, Noirot C, Jardinaud MF, Gamas P. 2016. Reprogramming of DNA methylation is critical for nodule development in Medicago truncatula. Nat Plants 2:16166. doi: 10.1038/nplants.2016.166.
    PubMed
  • Fonouni-Farde C, Tan S, Baudin M, Brault M, Wen J, Mysore KS, Niebel A, Frugier F, Diet A. 2016.DELLA-mediated gibberellin signalling regulates Nod factor signalling and rhizobial infection. Nat Commun 7:12636. doi:10.1038/ncomms12636.
    PubMed
  • Vernié T, Camut S, Camps C, Rembliere C, de Carvalho-Niebel F, Mbengue M, Timmers T, Gasciolli V, Thompson R, le Signor C, Lefebvre B, Cullimore J, Hervé C. 2016. PUB1 Interacts with the Receptor Kinase DMI2 and Negatively Regulates Rhizobial and Arbuscular Mycorrhizal Symbioses through Its Ubiquitination Activity in Medicago truncatula. Plant Physiol 170:2312-24. doi:10.1104/pp.15.01694.
    PubMed
  • Boivin S, Kazmierczak T, Brault M, Wen J, Gamas P, Mysore KS, Frugier F. 2016. Different cytokinin CHK receptors regulate nodule initiation as well as later nodule developmental stages in Medicago truncatula. Plant Cell Environ doi: 10.1111/pce.12779.  
    PubMed
  • Jardinaud MF, Boivin S, Rodde N, Catrice O, Kisiala A, Lepage A, Moreau S, Roux B, Cottret L, Sallet E, Brault M, Emery RJ, Gouzy J, Frugier F, Gamas P. 2016. A laser dissection-RNAseq analysis highlights the activation of cytokinin pathways by Nod factors in the Medicago truncatula root epidermis. Plant Physiol 171:2256-76. doi: 10.1104/pp.16.00711.
    PubMed
  • Cerri MR, Frances L, Kelner A, Fournier J, Middleton PH, Auriac MC, Mysore KS, Wen J, Erard M, Barker DG, Oldroyd GE, de Carvalho-Niebel F. 2016. The Symbiosis-Related ERN Transcription Factors Act in Concert to Coordinate Rhizobial Host Root Infection. Plant Physiol 171:1037-54. doi: 10.1104/pp.16.00230.
    PubMed
  • Chabaud M, Gherbi H, Pirolles E, Vaissayre V, Fournier J, Moukouanga D, Franche C, Bogusz D, Tisa LS, Barker DG, Svistoonoff S. 2016. Chitinase-resistant hydrophilic symbiotic factors secreted by Frankia activate both Ca2+ spiking and NIN gene expression in the actinorhizal plant Casuarina glauca. New Phytol 209:86-93. doi: 10.1111/nph.13732. 
    PubMed
  • Vernié T, Kim J, Frances L, Ding Y, Sun J, Guan D, Niebel A, Gifford ML, de Carvalho-Niebel F, Oldroyd GE. 2015. The NIN Transcription Factor Coordinates Diverse Nodulation Programs in Different Tissues of the Medicago truncatula Root. Plant Cell 27:3410-3424. doi: 10.1105/tpc.15.00461. 
    PubMed
  • Roux B, Bolot S, Guy E, Denancé N, Lautier M, Jardinaud MF, Fischer-Le Saux M, Portier P, Jacques MA, Gagnevin L, Pruvost O, Lauber E, Arlat M, Carrère S, Koebnik R, Noël LD. 2015. Genomics and transcriptomics of Xanthomonas campestris species challenge the concept of core type III effectome. BMC Genomics 16:975. doi: 10.1186/s12864-015-2190-0. 
    PubMed
  • Baudin M, Laloum T, Lepage A, Rípodas C, Ariel F, Frances L, Crespi M, Gamas P, Blanco FA, Zanetti ME, de Carvalho-Niebel F, Niebel A. 2015. A Phylogenetically Conserved Group of Nuclear Factor-Y Transcription Factors Interact to Control Nodulation in Legumes. Plant Physiol 169:2761-2773. doi:10.1104/pp.15.01144. 
    PubMed
  • Wang G, Roux B, Feng F, Guy E, Li L, Li N, Zhang X, Lautier M, Jardinaud MF, Chabannes M, Arlat M, Chen S, He C, Noël LD, Zhou JM. 2015. The Decoy Substrate of a Pathogen Effector and a Pseudokinase Specify Pathogen-Induced Modified-Self Recognition and Immunity in Plants. Cell Host Microbe 18:285-295. doi: 10.1016/j.chom.2015.08.004.
    PubMed
  • Alves-Carvalho S, Aubert G, Carrère S, Cruaud C, Brochot AL, Jacquin F, Klein A, Martin C, Boucherot K, Kreplak J, da Silva C, Moreau S, Gamas P, Wincker P, Gouzy J, Burstin J. 2015. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. Plant J 84:1-19. doi: 10.1111/tpj.12967.
    PubMed
  • Venkateshwaran M, Jayaraman D, Chabaud M, Genre A, Balloon AJ, Maeda J, Forshey K, den Os D, Kwiecien NW, Coon JJ, Barker DG, Ané JM. 2015. A role for the mevalonate pathway in early plant symbiotic signaling. Proc Natl Acad Sci U S A. 112:9781-9786. doi: 10.1073/pnas.1413762112.
    PubMed
  • Clavijo F, Diedhiou I, Vaissayre V, Brottier L, Acolatse J, Moukouanga D, Crabos A, Auguy F, Franche C, Gherbi H, Champion A, Hocher V, Barker D, Bogusz D, Tisa LS, Svistoonoff S. 2015. The Casuarina NIN gene is transcriptionally activated throughout Frankia root infection as well as in response to bacterial diffusible signals. New Phytol 208:887-903. doi: 10.1111/nph.13506.
    PubMed
  • Camps C, Jardinaud MF, Rengel D, Carrère S, Hervé C, Debellé F, Gamas P, Bensmihen S, Gough C. 2015. Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula. New Phytol 208:224-240. doi: 10.1111/nph.13427. 
    PubMed
  • Fournier J, Teillet A, Chabaud M, Ivanov S, Genre A, Limpens E, de Carvalho-Niebel F, Barker DG. 2015. Remodeling of the infection chamber before infection thread formation reveals a two-step mechanism for rhizobial entry into the host legume root hair. Plant Physiol 167:1233-1242. doi:10.1104/pp.114.253302. 
    PubMed
  • Laloum, T., Baudin, M., Frances, L., Lepage, A., Billault-Penneteau, B., Cerri, M.R., Ariel, F., Jardinaud, M-F., Gamas, P., de Carvalho-Niebel F,. and Niebel A. 2014. Two CCAAT box-binding transcription factors redundantly control early steps of legume-rhizobia endosymbiosis. Plant J 79:757-68. doi: 10.1111/tpj.12587.  
    PubMed
  • Formey, D., Sallet, E., Lelandais-Brière, C., Ben, C., Bustos-Sanmamed, P., Niebel, A., Frugier, F., Combier, J., Debellé, F., Hartmann, C., Poulain, J., Gavory, F., Wincker, P., Roux, C., Gentzbittel, L., Gouzy, J., Crespi, M. 2014. The small RNA diversity from Medicago truncatula roots under biotic interactions evidences the environmental plasticity of the miRNAome. Genome Biol. 15:457. 
    PubMed
  • Xiao, T. T., Schilderink, S., Moling, S., Deinum, E.E., Kondorosi, E., Franssen, H., Kulikova, O., Niebel, A., and Bisseling, T. 2014. Fate map of Medicago truncatula root nodules. Development 141:3517-28. doi: 10.1242/dev.110775. 
    PubMed
  • Rípodas, C., Clúa, J., Battaglia, M., Baudin, M., Niebel, A., Zanetti, M.E., Blanco F. 2014. Transcriptional regulators of legume-rhizobia symbiosis: nuclear factors Ys and GRAS are two for tango. Plant Signal Behav. 9:e28847. 
    PubMed
  • Battaglia, M., Rípodas, C., Clúa, J., Baudin, M., Aguilar, O.M., Niebel, A., Zanetti, M.E., Blanco, F.A. 2014. A nuclear factor Y interacting protein of the GRAS family is required for nodule organogenesis, infection thread progression, and lateral root growth. Plant Physiol. 164(3):1430-42.  
    PubMed
  • Moreau, S., Fromentin, J., Vailleau, F., Vernié, T., Huguet, S., Balzergue, S., Frugier, F., Gamas, P., Jardinaud, M-F. 2014. The symbiotic transcription factor MtEFD and cytokinins are positively acting in the Medicago truncatula and Ralstonia solanacearum pathogenic interaction. New Phytol 201,1343-1357.
    PubMed
  • Roux, B., Rodde, N., Jardinaud, M.F., Timmers, T., Sauviac, L., Cottret, L., Carrère, S., Sallet, E., Courcelle, E., Moreau, S., Debellé, .F, Capela, D., de Carvalho-Niebel, F., Gouzy, J., Bruand, C., Gamas, P. 2014. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser capture microdissection coupled to RNA-seq. Plant J 77, 817-837.
    PubMed
  • Laporte, P., Lepage, A., Fournier, J., Catrice, O., Moreau, S., Jardinaud, M-F., Mun, J-H., Larrainzar, E., Cook, D., Gamas, P., Niebel, A. 2014. The CCAAT box-binding transcription factor MtNF-YA1 controls rhizobial infection. J Exp Bot 65, 481-494.  
    PubMed

Other selected publications

  • Genre, A., Chabaud, M., Balzergue, C., Puech-Pagès, V., Novero, M., Rey, T., Fournier, J., Rochange, S., Bécard, G., Bonfante, P. and Barker, D.G. 2013. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol 198, 179-189.  
    PubMed
  • Laloum, T., De Mita, S., Gamas, P., Baudin, M. and Niebel, A. 2013. CCAAT-box binding transcription factors in plants: Y so many? Trends Plant Sci 18, 157-166.  
    PubMed
  • Cerri, M. R., Frances, L., Laloum T., Auriac M.-C., Niebel A., Oldroyd G.E., Barker D.G., Fournier J., de Carvalho-Niebel F. 2012. Medicago truncatula ERN transcription factors: regulatory interplay with NSP1/NSP2 GRAS factors and expression dynamics throughout rhizobial infection. Plant Physiol 160, 2155-2172.  
    PubMed
     
  • Sieberer, B.J., Chabaud, M., Fournier, J., Timmers, T., Barker, D.G. 2012. A switch in Ca(2+) spiking signature is concomitant with endosymbiotic microbe entry into cortical root cells of Medicago truncatula. Plant J 69, 822-830.  
    PubMed
  • Godiard, L., Lepage, A., Moreau, S., Laporte, D., Verdenaud, M., Timmers, T., Gamas, P. 2011. MtbHLH1, a bHLH transcription factor involved in Medicago truncatula nodule vascular patterning and nodule to plant metabolic exchanges. New Phytol 191, 391-404. 
    PubMed
  • Chabaud, M., Genre, A., Sieberer, B.J., Faccio, A., Fournier, J., Novero, M., Barker, D.G. and Bonfante, P. 2011. Arbuscular mycorrhizal hyphopodia and germinated spore exudates trigger calcium spiking in the legume and non-legume root epidermis. New Phytol 189, 347-55. 
    PubMed
  • Moreau, S., Verdenaud, M., Ott, T., Letort, S., de Billy, F., Niebel, A., Gouzy, J., de Carvalho-Niebel, F. and Gamas, P. 2011. Transcription reprogramming during root nodule development in Medicago truncatula. PloS ONE 6(1), e16463. 
    PubMed
  • Lefebvre, B., Timmers, T., Mbengue, M., Moreau, S., Hervé, C., Tóth, K., Bittencourt-Silvestre, J., Klaus, D., Deslandes, L., Godiard, L., Murray, J.D., Udvardi, M.K., Raffaele, S., Mongrand, S., Cullimore, J., Gamas, P., Niebel, A., Ott, T. 2010. A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Nat Acad Sci USA 107, 2343-48. 
    PubMed
  • Sieberer, B.J., Chabaud, M., Timmers, A.C., Monin, A., Fournier, J. and Barker, D.G. 2009. A nuclear-targeted cameleon demonstrates intranuclear calcium spiking in Medicago truncatula root hairs in response to rhizobial nodulation factors. Plant Physiol 151, 1197-206. 
    PubMed
  • Talukdar, T., Gorecka, K.M., de Carvalho-Niebel, F., Downie, J.A., Cullimore, J. and Pikula, S. 2009. Annexins – calcium- and membrane-binding proteins in the plant kingdom. Potential role in nodulation and mycorrhization in Medicago truncatula. Acta Biochim Polonica 56, 199-210. 
    PubMed
  • Combier, J.P., de Billy, F., Gamas, P., Niebel, A., and Rivas, S. 2008. Trans-regulation of the expression of the transcription factor MtHAP2-1 by a uORF controls root nodule development. Genes Dev 22, 1549-59. 
    PubMed
  • Genre, A., Chabaud, M., Faccio, A., Barker, D.G. and Bonfante, P.  2008. Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20, 1407-20. 
    PubMed
  • Vernié, T., Moreau, S., de Billy, F., Plet, J., Combier, J.P., Rogers, C., Oldroyd, G., Frugier, F., Niebel, A., and Gamas, P. 2008. EFD Is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. Plant Cell 20, 2696-713. 
    PubMed
  • Fournier, J., Timmers, A.C.J., Sieberer, B.J., Jauneau, A., Chabaud, M. and Barker, D.G. 2008. Mechanism of infection thread elongation in root hairs of Medicago truncatula and dynamic interplay with associated rhizobial colonization. Plant Physiol 148, 1985-95. 
    PubMed
  • Teillet, A., Garcia, J., de Billy, F., Gherardi, M., Huguet, T., Barker, D.G., de Carvalho-Niebel, F., and Journet, E-P. 2008. api, a novel Medicago truncatula mutant impaired in nodule primordium invasion. Mol Plant-Microbe Interact 21, 535-46. 
    PubMed
  • Combier, J.P., Kuster, H., Journet, E.P., Hohnjec, N., Gamas, P., and Niebel, A. 2008. Evidence for the involvement in nodulation of the two small putative regulatory peptide-encoding genes MtRALFL1 and MtDVL1. Mol Plant-Microbe Interact 21, 1118-27. 
    PubMed
  • Andriankaja, A., Boisson-Dernier, A., Frances, L., Sauviac, L., Jauneau, A., Barker, D.G. and de Carvalho-Niebel, F. 2007. AP2-ERF transcription factors mediate Nod factor-dependent MtENOD11 activation in root hairs via a novel cis -regulatory motif. Plant Cell 19, 2866-85. 
    PubMed
  • Combier, J.P., Vernié, T., de Billy, F., El Yahyaoui, F., Mathis, R., and Gamas, P. 2007. The MtMMPL1 early nodulin is a novel member of the matrix metalloendoproteinase family with a role in Medicago truncatula infection by Sinorhizobium meliloti. Plant Physiol 144, 703-16. 
    PubMed
  • Raffaele, S., Mongrand, S., Gamas, P., Niebel, A., and Ott, T. 2007. Genome-wide annotation of remorins, a plant-specific protein family: evolutionary and functional perspectives. Plant Physiol 145, 593-600. 
    PubMed
  • Godiard, L., Niebel, A., Micheli, F., Gouzy, J., Ott, T., and Gamas, P. 2007. Identification of new potential regulators of the Medicago truncatula-Sinorhizobium meliloti symbiosis using a large-scale suppression subtractive hybridization approach. Mol Plant-Microbe Interact 20, 321-32. 
    PubMed
  • Combier, J.P., Frugier, F., de Billy, F., Boualem, A., El-Yahyaoui, F., Moreau, S., Vernié, T., Ott, T., Gamas, P., Crespi, M., and Niebel, A. 2006. MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20, 3084-88. 
    PubMed
  • Genre, A., Chabaud, M., Timmers, T., Bonfante, P. and Barker, D.G. 2005. Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells prior to infection. Plant Cell 17, 3489-99. 
    PubMed
  • Boisson-Dernier, A., Andriankaja, A., Chabaud, M., Niebel, A., Journet, E-P., Barker, D.G. and de Carvalho-Niebel, F. 2005. MtENOD11 gene activation during rhizobial infection and mycorrhizal arbuscule development requires a common AT-rich-containing regulatory sequence. Mol Plant-Microbe Interact 18, 1269-76. 
    PubMed
  • Küster, H., Hohnjec, N., Krajinski, F., El Yahyaoui, F., Manthey, K., Gouzy, J., Dondrup, M., Meyer, F., Kalinowski, J., Brechenmacher, L., van Tuinen, D., Gianinazzi-Pearson, V., Pühler, A., Gamas, P., Becker, A. 2004. Construction and validation of cDNA-based macro- and micro-arrays to explore root endosymbioses in the model legume Medicago truncatula. J. Biotechnology 108, 95-113. 
    PubMed
  • El Yahyaoui, F., Küster, H., Ben Amor, B., Hohnjec, N., Pühler, A., Becker, A., Gouzy, J., Vernié, T., Gough, C., Niebel, A., Godiard, L., Gamas, P. 2004. Expression profiling in Medicago truncatula identifies more than 750 genes differentially expressed during nodulation, including many potential regulators of the symbiotic program. Plant Physiol 136, 3159-76. 
    PubMed
  • Charron, D., Pingret, J.L., Chabaud, M., Journet, E.P. and Barker, D.G. 2004. Pharmacological evidence that multiple phospholipid signaling pathways link Rhizobium nodulation factor perception in Medicago truncatula root hairs to intracellular responses including calcium spiking and specific ENOD gene expression. Plant Physiol 136, 3582-93. 
    PubMed
  • Kosuta, S., Chabaud, M., Lougnon, G., Gough, C., Denarie, J., Barker, D.G. and Bécard, G. 2003. A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131, 952-62. 
    PubMed
  • Journet, E-P., van Tuinen, D., Gouzy, J., Crespeau, H., Carreau, V., Farmer, M-J., Niebel, A., Schiex, T., Jaillon, O., Chatagnier, O., Godiard, L., Micheli, F., Kahn, D., Gianinazzi-Pearson, V., Gamas, P. 2002. Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis Nucl Acids Res 30, 5579-92. 
    PubMed
  • de Carvalho-Niebel, F., Timmers, A.C.J., Chabaud, M., Defaux-Petras, A. and Barker, D.G. 2002. The Nod factor-elicited annexin MtAnn1 is preferentially localised at the nuclear periphery in symbiotically-activated root tissues of Medicago truncatula. Plant J 32, 343-52. 
    PubMed
  • Boisson-Dernier, A., Chabaud, M., Garcia, F., Bécard, G., Rosenberg, C. and Barker, D.G. 2001. Agrobacterium-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant-Microbe Interact 14, 695-700. 
    PubMed
  • Journet, E.-P., El-Gachtouli, N., Vernoud, V., de Billy, F., Pichon, M., Dedieu, A., Arnould, C., Morandi, D., Barker, D. G., and Gianinazzi-Pearson V. 2001. Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant-Microbe Interact 14, 737-48. 
    PubMed